HLA disease association assignment by multiplexed NGS assay

Aim

Strong association of HLA molecules with autoimmune and inflammatory diseases have been identified, strengthening the value of HLA genetic screening for diagnostic purposes. There is a strong association between Ankylosing Spondylitis (AS) and HLA-B27. In ~90% of European patients, B27 alleles strongly predispose for AS. In ~90% of patients with Celiac Disease (CD), the HLA-DQ2.5 phenotype is expressed, encoding HLA-DQA1*05:01 and DQB1*02:01 alleles, with the remaining ~10% mostly expressing the HLA-DQA molecule, encoding the DQA1*03 variant and DQB1*03:02 alleles. Also in the field of pharmacogenetics there is a growing interest in the role of HLA. HLA-B*57:01 screening to prevent Abacavir hypersensitivity syndrome is now a routine clinical use in the developed world. We developed a HLA genetic screening test NGSgo-HLALinkX that identifies HLA-B, DQA, and DQB1 typings by NGS using a multiplexed amplification strategy in a single tube.

Methods

A multiplexed amplification assay was established that encompasses HLA-B, HLA-DQA1 and HLA-DQB1 locus specific amplification of exons 2 and 3 in a single tube (Fig. 1). The assay was compatible with the multiplex PCR kit (Qiagen) and required a PCR enhancer (GenDx). Analytical performance studies were assessed including screening of a large gDNA validation panel (1195 samples) to verify robustness, (82 different HLA-B alleles, 83 HLA-DQA1, and 93 different DQB1 alleles). Amplicons were pooled and processed into the same NGSgo library preparation workflow for Illumina as established for HLA typing by NGSgo-AmpX (GenDx) (Fig. 2). The assay was compatible with the general workflow (Fig. 3) and the NGSgo-HLALinkX multiplexed PCR on validation panel (Fig. 4). The assay was compatible with the general workflow (Fig. 3) and the NGSgo-HLALinkX multiplexed PCR on validation panel (Fig. 4).

Results

For all samples tested (n=95) strong amplicons of the expected sizes were generated in a multiplexed PCR (Fig. 3). The no template control was clean (position H2, Fig. 3). NGS data showed high locus mappability (>92%), average insert sizes >300 (Fig. 4) and full coverage of the amplicon with even distribution of reads, especially for HLA-B, and HLA-DQA1, having average read depths >1500 (data not shown). The multiplexed assay showed to be capable of detecting both alleles when present in a balanced manner. Preferential amplification was only detected in the presence of DQB1*03 alleles. By lowering the DQB1 allele threshold to 15% in the presence of DQB1*03 alleles. By lowering the DQB1 allele threshold to 15% in the presence of DQB1*03 alleles. We could exclude all B*27 N-alleles. All samples carrying B*27 (n=6) were confirmed at the 1st field resolution, or higher (Fig. 5). We could not exclude the low frequent N-alleles B*57:79N and B*51:11N (Fig. 5).

Conclusions

We developed a robust NGS-based HLA genetic screening test NGSgo-HLALinkX that identifies HLA-B, DQA1, and DQB1 typings associated with Ankylosing Spondylitis (B*27), Celiac Disease (DQ2.5, DQ2.2, DQ8 and DQ2.75), narcolepsy (HLA-DQB = 06:02), Behcet’s disease (HLA-B*51 and HLA-B*52), and Abacavir hypersensitivity (B*57:01). The multiplex strategy and compatibility with our general NGSgo HLA typing strategy, reduces laboratory workload and standardizes the workflow.

References

2) Ludwig M et al Immunogenetics 2012, Volume 64, Issue 6, pp. 455-460

Figure 1. NGSgo-HLALinkX amplification strategy.

Figure 2. NGSgo-HLALinkX workflow

Figure 3. NGSgo-HLALinkX multiplexed PCR on validation panel.

Figure 4. NGSgo-HLALinkX multiplexed PCR on validation panel.

Figure 5. NGS typings obtained using NGSgo-HLALinkX