High Resolution HLA Typing For Companion Diagnostics Using The Next Generation DNA Sequencing Strategy: Pyrosequencing

Introduction

Recently, requests for accurate HLA typing have been significantly raised in the area of personalized health care. Evidence has been presented by several groups worldwide that some HLA alleles are associated with diseases or alternatively with adverse effects of certain drugs.

For instance, Celiac Disease is strongly associated with HLA-DQ2 and HLA-DQ8, as the combination of the underlying HLA-DQA1 / HLA-DQB1 genotypes predispose for disease development. Another example is the association of HLA-DQA1*01:02 with a higher risk for adverse reactions to lumiracoxib, a painkiller for treatment of the bone disease Osteoporosis. On the other hand, it has also been shown that certain alleles within the groups of HLA-B*27 and HLA-B*57 slow down the development and progression of AIDS in HIV positive patients, as compared to patients without this allele.

A test, specific for these kinds of HLA typing requires in most cases a presence / absence scoring and is performed by non-HLA specialized laboratories which requires a different design compared to the tests used for tissue typing.

We have optimized the Pyrosequencing technology to enable fast, cost effective and accurate analysis of HLA sequences. Here, we will present an update on the status of our Pyrosequencing assay developments.

Materials and Methods

We recently presented a new typing strategy for the HLA-DQA1 gene using Pyrosequencing. The workflow consists of one generic HLA-DQA1 amplification, followed by 4 Pyrosequencing reactions. We have verified the performance of the assay on a panel of 40 samples (Table 1), consisting of a mix of cell line (IHWG) and clinical samples (S). Samples were tested in a blinded manner by two independent operators. Data analysis was performed using in-house developed software. Typing results obtained with Pyrosequencing were compared to typing results obtained with SBTexcellerator.

Data analysis

The in-house developed software for analyses of the Pyrosequencing data is used to:

• Load the alleles and sequences from the IMGT database
• Predict the relative peak heights based on the possible (IMGT based) alleles and genotypes
• Compare the experimental peak heights to the predicted peak heights
• Judge the quality of the experimental data
• Show genotypes with similar peak heights
• Direct the user to areas that need to be verified by the user to be able to select the right genotype

Conclusion

• By means of a generic amplification followed by a limited number of Pyrosequencing reactions the DQA1 alleles present in samples can be determined in a robust manner.
• Each assay can be performed in 4 hours.
• Pyrosequencing technology can be used to enable fast, cost effective and accurate analysis of HLA sequences.
• The in-house developed software has been developed in close collaboration with researchers and laboratory technicians. As a result, it enhances typing of unknown samples in an efficient and user-friendly manner.
• GenDx continues to develop more assays for personalized healthcare based on Pyrosequencing.

Maarten Penning1, Albert Wijngaard2, Jeroen Adema1, Daan Acohen1, Ron Ospelten1, Wietse Mulder1, Erik Rozemuller1
1) GenDx, Yalelaan 48, 3584 CM Utrecht, the Netherlands
2) QIAGEN GmbH, Qiagen Strasse 1, 40724 Hilden, Germany